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ABSTRACT
In this paper, we are going to look at how cognitive models of
human memory and analogy-making can be used by artificial
agents to represent context-specific knowledge, and to apply
knowledge from more distant, or analogous, contexts. In
particular, we will focus on an activation-based model of
working memory, and a hybrid model of associative memory
that is able to discover analogues and the correspondences
between them.

We will also look at a model of context-mediated behaviour,
and we will close by identifying how these three models can
be brought together and developed into an artificial working
memory system.

Categories and Subject Descriptors:
I.2.6 and I.2.4 [Artificial Intelligence]: Computing Method-
ologies — Learning; Knowledge Representation Formalisms
and Methods

Keywords:
Working Memory, Associative Memory, Analogies, Context,
Context-specific knowledge, Context-mediated behaviour

1. INTRODUCTION
In the field of artificial intelligence (AI), the term ‘intelligent
agent’ usually refers to a software entity that can observe its
environment and act in a goal directed manner; an agent is
said to be ‘rational’ if it chooses actions that it believes will
maximise its measure of performance, given its model of the
world and its background knowledge.

According to this definition, rational behaviour ought to be
quite achievable; practically, however, there are still real dif-
ferences between the way we act, and the way in which arti-
ficial agents behave. Even in complex, real-world situations,
we humans are able to infer a lot about our environment,
and thus build up a detailed world model — a task that helps
us to deal with uncertain, incomplete, and even erroneous
information, but a task that tends to require context-specific
knowledge.

In this paper, we are going to look at how cognitive models of
human memory and analogy-making can be used by artificial
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agents to represent this type of knowledge, and to represent
the contexts themselves. While this approach is somewhat
novel, the use of contexts to capture implicit assumptions, to
constrain problem-solving, and to qualify knowledge is not
— previous research has looked at how we can model and
represent context using logic, production rules, and local, or
context-sensitive, knowledge bases (for an overview of these
approaches, see [5, 20, 28]).

Indeed, the importance of context to first-order logic was
discussed by John McCarthy as far back as 1979 [21]. In
this paper, entitled ‘Generality in Artificial Intelligence’,
McCarthy also touched on two other approaches to gener-
ality: the production systems of Newell and Simon focused
on generalising the goal-seeking and problem-solving mech-
anisms, while their ‘General Problem Solver’ attempted to
generalise the problems themselves, and obtained solutions
by finding appropriate sets of transformations. This prob-
lem solver prefigured, at least to some extent, the structure
mapping models of analogy that were developed by cognitive
scientists in the 1980s [13, 15].

But why look at these three areas, and how do they fit to-
gether? Firstly, cognitive models of working memory give
us two things: (1) a theoretical basis that is supported by
empirical evidence, and (2) information about some of the
idiosyncrasies of human memory that could also benefit ar-
tificial agents. Cognitive models of analogy and analogical
recall tell us how to retrieve more distant memories, and
they give us insights into one of our most important mental
tools; in some cases, they even give us a general, compu-
tational model of associative memory. Finally, the areas of
context representation and modeling give us (1) examples
of how agents can benefit from a semi-autonomous context-
dependence knowledge base, and (2) insight into some of
the issues we might face when trying to merge contradic-
tory knowledge.

In this paper, then, we are going to review some of the
work that has come out of the field of cognitive science;
in Section 2 we will look at two models of human working
memory, while Section 3 will focus on models of analogy.
Finally, in Section 4, we will review some models of context
and context-mediated behaviour.

2. WORKING MEMORY
In cognitive psychology, the term ‘working memory’ refers to
the structures and mechanisms that maintain task-relevant



information in a highly accessible form for the duration of
a cognitive task. In this sense, working memory is similar
to its theoretical predecessor, short-term memory (STM).
There are, however, some important differences, particularly
in their relationship to long-term memory (LTM) and the
way in which their contents are used.

Early models of the human information processing system
clearly differentiated between short- and long-term memory.
In Broadbent’s original model ([6], as summarised in [8]),
information is conveyed in a fixed order from one storage
unit to the next. Percepts are first held in an unanalysed
form, in a sensory store of unlimited capacity. Some of this
sensory information is selected for further analysis, and the
processed information is held in a limited-capacity short-
term store. Finally, a subset of this information is stored in
a permanent, or long-term store, which is implemented as a
semantic network.

This model was not without it detractors, and by 1984,
Broadbent conceded that it was too linear, and depended
too heavily upon feedback loops. To address these issues, he
proposed an alternative model in which the abstract work-
ing memory, sensory, long-term associative and motor out-
put stores were arranged around a central processing sys-
tem. While his now ubiquitous Maltese Cross model ([7],
as summarised in [4, Chapter 2]) does allow information to
flow freely from one store to another, it relies heavily on
the processing system to translate and regulate the flow of
information.

In both of these models, storage in STM is temporary; its
contents are highly accessible, but when attention is diverted
to another demanding task, the information stored in STM
becomes unavailable in a matter of seconds. Also, the stor-
age capacity of STM is limited to around seven (plus or
minus two) items. The capacity of LTM, on the other hand,
is assumed to be vast and much more durable than that of
STM. In these models, its primary bottleneck is its accessi-
bility, with retrievals from LTM taking about 1 s, and the
storage of a new memory taking between 5 and 10 s.

In contrast to the traditional storage-oriented notion of short-
term memory, working memory is a more active and processing-
oriented construct. It has been described as the ‘workspace’
or ‘blackboard’ of the mind, and it is where the active pro-
cessing and temporary storage of task-relevant information
take place [23, 9]. Such a view of working memory requires a
more sophisticated account of the control mechanisms that
goes beyond simple memorisation strategies.

To introduce the concept of working memory, let us look
at two models that typify the two main families of cogni-
tive theories — the multiple component models, and the
activation-based models. (For a good introduction to other
members of these families, see [23].)

2.1 Multiple-Component models of Working
Memory

The first group of models defines working memory as a plural
construct that is separate from long-term memory. Multiple-
component models are reminiscent of Broadbent’s Maltese
Cross in that they maintain information in multiple stores

and are regulated by one or more executives; however, many
of the models are also refinements as they include modal, or
sense-specific memory and maintenance procedures.

The canonical multiple-component model was introduced by
Baddeley and Hitch [2] in 1974, and is arguably the best
known model of working memory. In its original form, it
consisted of three components: the central executive, and
two auxiliary, or ‘slave’ systems called the phonological loop
and the visuospatial sketchpad. The central executive is re-
sponsible for coordinating the slaves and directing the focus
of attention; the slave systems provide temporary storage
for verbal and visual information, respectively. This par-
titioning of working memory was based upon the selective
interference effects found in dual-task tests, and the impair-
ments associated with specific types of brain damage [3].

According to this model, storage in these slave systems is
volatile, and without active rehearsal their contents will be-
come inaccessible within seconds. Information in the phono-
logical loop is maintained using processes similar to silent
rehearsal; they were less clear on how visual and spatial in-
formation is maintained. These processes were made more
explicit by Baddeley and Logie [3] who further divided each
of the stores into a passive memory, and an active rehearsal
component that is under the control of the executive.

The central executive, too, has undergone some changes.
Originally, it included some short-term storage of its own
that could supplement the slave systems or store memory
traces associated with the other senses; more recent accounts
of the multiple-component model have dropped this assump-
tion in favour of an episodic buffer and access to long-term
memory [3]. 2

These models are consistent with our ability to maintain
verbal and visual information, and they account for the in-
terference effects seen in studies and in everyday life. How-
ever, I do not believe that they should form the basis of an
artificial memory system.

Firstly, their focus is on how we maintain perceptual infor-
mation and, to a lesser extent, how we prepare for spe-
cific types of actions; they do not really account for how
we maintain, and manipulate, declarative knowledge. Their
central executive poses another problem; as Baddeley and
Logie said of their own theory [3, p. 39], one problem with a
“control structure like the central [executive] is that such a
model simply postulates a homunculus, a little person who
makes all the awkward decisions in some unspecified way
and, hence, that it adds nothing in explanatory value”.

2.2 Working Memory as an Activated Subset
of Long-term Memory

The other group of models treats working memory as an
activated subset of long-term memory that is governed by
a single, or mode-independent, mechanism and includes the
theories of Cowan [9] and Ericsson and Delaney [10]. While
this view of working memory dates back, in part, to Nor-
man [24], it was not until Cowan’s review of 1988 [8] that
its implications upon the flow of information, the role of the
central executive, and the mechanisms of selective attention
were considered in detail.



A full review of Cowan’s arguments and evidence is beyond
the scope of this paper, but we will look at the key points
of his Derived Components of Processing model of the hu-
man information processing system and its successor, the
Embedded-Processes model of working memory. The essence
of these models is that (1) working memory is hierarchical,
(2) we habituate to, rather than filter out unwanted stimuli,
(3) attention and awareness are directed by both voluntary
and involuntary processes, and (4) awareness affects the way
in which memories are encoded and retrieved.

Cowan’s models of working memory consist of long-term
memory, the activated subset of memory (which equates
roughly to short-term memory), and the focus of atten-
tion. Traces in long-term memory can be activated by stim-
uli, priming or voluntary processes, but only representations
with a sufficiently high level of activation may enter the fo-
cus of attention. While Cowan doesn’t identify any limits
to the total amount of activation, he notes that, without
maintenance, activation tends to fade within 10 to 20 s; in
contrast, he suggests that the focus of attention is capacity
limited and can only hold around four active items at a time.

On the second point, Cowan argues that it is habituation,
and not filtering, which directs our focus of attention. In-
stead of blocking an unattended stimulus, the processing sys-
tem develops a model of its physical characteristics. This
model leads to habituation which, in turn, suppresses fur-
ther processing of the unwanted stimulus, thus allowing rep-
resentations of habituated stimuli to be activated without
ever entering awareness. The habituation hypothesis is also
consistent with observations that are much harder to explain
using traditional filter-based models of attention (the most
notable of these is that physical changes in an unattended
stimulus are easy to detect, but semantic changes are much
harder to recognise).

Cowan’s third point is that attention is directed conjointly
by voluntary and involuntary processes. According to his
theories, a memory may be activated through effortful pro-
cesses, or by exposure to a stimulus. On this, he wrote
“If concepts ‘rise to active attention’ by virtue of the total
activation resulting from automatic and attentive sources
together, then it might also be possible for a concept to
reach awareness because its automatic activation alone sur-
passes a certain level” [8, p. 171]. While this may seem fairly
intuitive, involuntary processes, and the role they play in di-
recting our attention, seem to have been largely ignored by
many multiple-component models.

Voluntary attention is directed by a central executive. As
in Baddeley and Logie’s model [3], the executive directs the
focus of attention and activates representations within long-
term memory; however, Cowan’s central executive is also
responsible for maintaining information in short-term mem-
ory, and for increasing the efficiency of memory coding and
access.

On the involuntary processes, Cowan identifies three situ-
ations in which a stimulus in an unattended channel may
draw resources away from the prior, voluntary focus of at-
tention. They are: (1) when there is a change in the phys-
ical characteristics of the unattended stimulus, (2) when

the stimulus is of personal significance to the subject, and
(3) when an unattended channel contains information that
has been primed by recent context.

His final point is that attention affects the extent to which
memory traces are encoded, and the way in which they are
retrieved; “In perception it increases the number of features
encoded, and in memory it allows new episodic representa-
tions to be available for explicit recall” [9, p. 65]. He also
argues that memories encoded with effort and awareness are
easier to recall because they allow us to incorporate “con-
textual constraints that would not automatically be taken
into account” [8, p. 176]. 2

While the multiple-component models focus on sense-specific
information, Cowan provides a general, domain independent
model of memory and the human attentional system — that
is, his theories focus on the structure of working memory,
the mechanisms of selective attention, and how memories
are activated.

More importantly for us, Cowan’s theories are well suited
to computer modeling. His models are consistent with the
ACT∗ and ACT-R models of Anderson and Lebiere [19],
and the distinction between voluntary and involuntary pro-
cesses complements ACT-R’s concepts of base-level (context
independent) and source (contextual) activation. There are
also parallels between his central executive and the prag-
matic unit of Holyoak and Thagard’s Analogical Constraint
Mapping Engine [15].

However, it is the relationship between Cowan’s theory and
the Associative Memory-Based Reasoning (AMBR) model
of Kokinov and his colleagues [17, 18] that is particularly
interesting. Like Cowan’s theory, AMBR’s model assumes
that (1) working memory is hierarchical, (2) focus can be
directed by internal and perceptual processes, and (3) the
retrieval process is affected by the reasoner’s awareness, or
internal context1. (Section 3.2 provides a more detailed re-
view of AMBR and its associated studies.)

2.3 Artificial Working Memory
Thus far, we have focused on theories of human memory —
many of which have been implemented as computer models.
These models have been used to further our understanding
of the human mind; they encourage rigour, they allow us
to validate hypotheses by generating predictions that can
be compared with observed data, and they can be used to
systematically compare different theories.

In the area of memory research, computer models have been
used to assess models of the phonological loop, and to inves-
tigate predictions of serial recall performance and intrusion
errors. They have also been used to investigate temporal

1Despite these similarities, there are also some key differ-
ences: (1) AMBR is a model of analogical reasoning, and
not just of working memory, (2) AMBR is a hybrid model
in which each element of LTM has both an activation and a
symbolic processor, and (3) AMBR’s architecture is funda-
mentally decentralised — concepts and episodes are repre-
sented by coalitions of elements, and the task of the execu-
tive is itself distributed across the active elements of working
memory.



Figure 1: The relationship between analogy, case-
based reasoning, artificial working memory and in-
telligent agents.

and contextual dependencies in LTM, and to model serial
recall in working memory. The AMBR family of models
have even been used to study the effects of context and prim-
ing on recall, problem-solving, re-representation and episode
blending [18].

We have seen that working memory plays a crucial role in
cognition, and that computer models of working memory
can help us to further our understanding of the human mind.
But why would we want to build an artificial working mem-
ory system? There are several reasons. Perhaps the most
compelling reasons come from its ability to separate retrieval
from reasoning, and its ability to acquire new concepts.

When designing an artificially intelligent agent, we need to
consider many things — how will we represent the environ-
ment? what kind of background knowledge should we give
it, and how will it access this information? how will it cope
with uncertainty and incomplete data? how will it choose
its actions? and how will we rate its performance?

By placing working memory between an agent’s sensors and
its decision making element, we can give it the ability to
recognise existing contexts, and reason using precedents —
even analogies. This, in turn, allows the designer to focus on
the agent’s heuristics. (Turner et al. adopted a similar ap-
proach in developing their Context-Mediated Behaviour [28,
1]; see Section 4.2 for more details.) And if our memory
system is able to learn at the sub-symbolic level (i.e. it can
discover, and represent, significant associations and struc-
tures), then we might even be able to give the agent new
symbols to reason about.

Another reason to create an artificial working memory sys-
tem is that doing so will also give us a framework within
which to investigate different types of similarity, measures
of uncertainty, and knowledge bases (independently, or when
connected to an agent). The final reason is less concrete, but
important nonetheless. By alluding to its natural counter-
part, the term artificial working memory encourages us to
consider and incorporate the research of cognitive scientists.

For an artificial memory system to be of use to an agent,
though, I believe that it needs to:

1. increase the observability of the environment by storing
recent percepts and inputs;

2. identify relevant background knowledge and precedents,
and make that information available to the agent;

3. make inferences about the current environment by draw-
ing upon similar situations, episode fragments, ana-
logues and schema;

4. be able to maintain multiple hypotheses and change its
assumptions and inferences as the agent’s goals and
environment develop;

5. be able to discover new associations, concepts and con-
texts, and generate new symbols that represent their
essential features; these new concepts could then be
used, by the agent or the memory system, to classify
settings or episodes;

6. be able to operate continuously. If we ignore their sub-
tleties for a moment, the aim of most models of analogy
and case-based reasoning is to retrieve, adapt and ap-
ply the episode description that most closely parallels
the current situation — that is their processing starts
with a snapshot of the current situation and ends when
they have produced an ‘answer’. Working memory, on
the other hand, doesn’t take a single input, nor does it
have an end product — rather, its inputs are contin-
uous streams that represent the environment and the
agent’s goals;

7. interact with the agent; that is, it should be able to
affect the agent’s focus of attention, and the agent
should be able to change the distribution of activity
in working memory;

The first two of these features are quite unremarkable and
are usually implemented, at least to some extent, in the
agents themselves. The ability to make inferences from
general knowledge and precedents, both closely related and
more distant, is less common; and being able to represent,
and distinguish between, different contexts is even more
novel. However, what differentiates artificial working mem-
ory from the models of analogy and case-based reasoning is
the concept of a memory system that sits between an agent’s
sensors and its decision making element and interacts with
the agent’s logic.

3. ANALOGICAL REASONING
Having looked at the concept of working memory, and Cowan’s
activation-based model in particular, we are now going to
turn our attention to the area of analogies, and how they
can be used to recall more distant memories and precedents.

Analogy is both the resemblance of relations, and the cogni-
tive process of transferring knowledge from one concept, or
domain, to another. Analogies enable us to learn and to rea-
son about new concepts in terms of the familiar; we use them
to draw parallels between dissimilar situations; and they al-
low us to solve specific problems by applying our knowledge
of general principles.



In the paper which introduced the Structure-Mapping theory
of analogy, Gentner identified several different kinds of com-
parisons and defined them in terms of the types of predicates
they map [13]. In particular, she defined literal similarity as
a comparison which maps attributes and relations from a
source to the target, analogy as a comparison which maps
primarily relations, and abstraction as an analogy which re-
lates the target to a system of abstract or variable-like con-
cepts.

While these definitions of similarity and analogy are widely
accepted, there is less agreement on what it means to ‘reason
by analogy’. Most models of analogical reasoning identify
the following stages [29, 13, 27, 17]:

1. a retrieval or access stage, which searches for sources
that are similar, or analogous to, the current target;

2. a mapping stage, which finds, and applies, one or more
mappings from the source analogue to the target;

3. a transference stage, in which these mappings are com-
bined with knowledge about the source domain to make
additional inferences about the target;

4. an evaluation stage, which estimates the quality of the
analogy based upon the types of its mappings and how
well their inferences agree with the known facts; and

5. a learning stage, which incorporates new information
into its knowledge base.

When it comes to the details, however, there is less consen-
sus. Some theories try to account for all of the stages [29,
17] while others focus on just one or two of them. Some re-
quire the source and target analogues to come from different
domains [13] while others simply define ‘reasoning by anal-
ogy’ as the transfer of knowledge from object to another. Of
those theories that provide an account of the retrieval stage,
some take an agent’s context and goals into account when
searching for mappings [27, 17], while others consider only
the source and target analogues.

In this section, we are only going to look at two models of
analogy and analogical reasoning — the first is arguably the
best known traditional model of analogy, and the other is
a hybrid, multiple-constraint model. There are, of course,
many others (including the early works of Patrick Win-
ston [29], and ACME and ARCS [15, 27], which were the
first models to consider the multiple constraints of struc-
ture, semantics and pragmatics), however these have been
omitted for the sake of brevity.

3.1 The Structure Mapping Theory
The Structure-Mapping theory of analogy was proposed by
Dedre Gentner in 1983 [13] and implemented in the Structure-
Mapping Engine (SME) of 1986 [11]. While this was not the
first attempt to model the process of analogy on a computer,
Gentner was the first person to develop a formal theory of
mapping and transference based upon systems of intercon-
nected relationships.

In structure-mapping, knowledge is stored in a propositional
network. Concepts are represented by nodes, attributes cor-
respond to single-argument predicates, and relations are rep-
resented by predicates of two or more arguments. Predicates

are further classified as first-order or higher-order, depend-
ing on whether their arguments are concepts or other pred-
icates.

Her theory also defines three types of similarity. Literal
similarity involves the mapping of attributes and relations.
In an analogy, only relational structures are mapped, and
an analogy which maps an abstract description to a target
concept is called an abstraction.

The central ideas of her theory are: (1) that analogies are
relation-preserving mappings between concepts or domains;
and (2) that systems of nested relations should be favoured
over isolated predicates because they describe causal chains
or constraining principles. The second idea, which she calls
the systematicity principle, determines which relations should
be mapped from the source domain into the target.

Psychological studies by Gentner et al. appear to support
this principle of systematicity. They found that adults do
indeed focus on shared systematic relational structures when
interpreting analogies and judging their soundness [12], and
that systematicity can also account for some aspects of con-
text sensitivity. 2

Even though the structure-mapping theory may be an in-
tuitive model of the way we reason by analogy, it has sev-
eral limitations. Firstly, by itself, it does not address the
retrieval stage of analogical reasoning; rather, it assumes
that suitable source analogues have already been found. (A
model of similarity-based retrieval, called MAC/FAC, was
developed to support the SME, however, the combined sys-
tem still only implements a sequential model of analogy —
i.e. MAC/FAC is essentially a pre-processor.)

Secondly, while the SME tries to find those mappings that
best preserve the relational structures of the base and tar-
get, it requires a literal transfer of relations; unlike other
theories (which consider predicates to be similar if they are
synonyms, hyponyms or meronyms), the original structure-
mapping engine will only match relations if they are identi-
cal.

And finally, the SME emphasises systematicity and struc-
tural consistency over pragmatic and semantic constraints.
This is in contrast to other models (such as ACME [15] and
AMBR [17]) which use the systems’ goals to identify par-
ticularly salient features, and the relationships described in
their knowledge bases to support semantic and structural
similarity.

3.2 Associative Memory-Based Reasoning
Associative Memory-Based Reasoning (AMBR) was first in-
troduced by Boicho Kokinov in 1988, however the version we
are interested in is based upon the hybrid models described
in 1994 [17]. (AMBR was developed to model the sponta-
neous use of analogy in problem solving, it has also been
used to investigate the effects of priming and context, and
episode-blending and re-representation.)

While other hybrid models of analogy have been proposed
over the years (see, for example, [15, 27]), AMBR is unique
in several respects: (1) it is inherently dualistic — i.e. each



fundamental processing unit is a symbolic processor and part
of a connectionist system; (2) AMBR’s behaviour and char-
acteristics emerge from the interactions of its agents — i.e.
it has no central executive; (3) it finds analogies by running
the retrieval and mapping processes concurrently; and (4) it
represents episodic knowledge in a decentralised manner.

The DUAL Cognitive Architecture
To understand how AMBR works, and to see how its sym-
bolic and connectionist components interact with each other,
we first need to look at its underlying cognitive architecture.
DUAL is a multi-agent architecture that is built around
large networks of simple hybrid processing units, called micro-
agents2 True to its name, much of the architecture can be
described from two different perspectives. DUAL itself can
be thought of as a memory system or a parallel distributed
processor; the agents can be thought of as representational
or processing units; they represent both symbolic and as-
sociative knowledge; and the links between the agents have
symbolic and connectionist significance.

If we think of DUAL as a memory system, then the total
set of agents constitutes its long-term memory (LTM), while
the set of active agents makes up its working memory. Each
agent represents a specific piece of knowledge, and every
agent has a symbolic and a connectionist component. If the
symbolic part of an agent represents a piece of declarative
knowledge, then the connectionist part represents its rele-
vance, and thus its accessibility in the current context. If,
on the other hand, the symbolic component represents pro-
cedural knowledge, then the agent’s activation determines
whether the operation is allowed to proceed and its rate of
execution [26].

DUAL can also be thought of as a parallel distributed pro-
cessor, where each agent maintains a small, local store of
information, and can perform a few simple symbolic and
connectionist operations. Practically, DUAL agents are im-
plemented in LISP as frame-like structures. While they are
often used to represent objects, concepts, propositions, sit-
uations or rules, they can also define daemons and proce-
dures — this is how, for example, spreading activation and
marker-passing are implemented.

In fact, these two mechanisms are built into every agent,
and it is through them that the phenomenon of associative
memory emerges. Where spreading activation uses associa-
tive relevance to reduce the size of the search space, marker-
passing uses causal relevance and semantic similarity. In
AMBR, marker-passing is used for two reasons: (1) to see
if two agents share a common super-class, and (2) to find a
correspondence between the elements of two sets of agents.

Links, too, serve a dual purpose. From a symbolic point of
view, a link can represent an arbitrary relationship; the ar-
chitecture does, however, define several standard link types
including sub-class, super-class, instance and instance-of.
From the connectionist perspective, each link has a weight
that reflects the strength of an association between two
agents, and which determines how much activation will be

2For brevity’s sake, I shall use the terms micro-agent, DUAL
agent and agent interchangeably, but only in this section.

shared between them. These links may be permanent or
temporary; excitatory or inhibitory. The permanent ones
come from LTM and are excitatory, while the temporary
links are created by agents to enforce specific constraints —
these links may be excitatory or inhibitory.

Finally, there is the activation. In DUAL, there are two
sources of activity: input nodes and goal nodes. Input nodes
are the percepts; they emit a constant amount of activation
for as long as the corresponding objects are part of the envi-
ronment. Goal nodes are agents that have been identified as
pragmatically important, and they emit a constant amount
of activation for as long as they are on the goal list. 2

We have now looked at the DUAL architecture, and seen the
way in which its symbolic and connectionist aspects inter-
act. But how does AMBR actually represent knowledge and
reason by analogy? To answer these questions we will need
to introduce three new types of agents — concept agents,
instance agents and hypothesis agents. (AMBR also intro-
duces four new symbolic processes, but we will start our
review by looking at its agents.)

In AMBR, basic declarative knowledge is represented by
concept and instance agents, while propositions are rep-
resented by small, inter-connected groups of agents called
coalitions. Concept agents define types of objects and rela-
tions, while instance agents represent specific instances of
objects, relations and situations. Each of these agents has
a frame-like structure called a micro-frame; these micro-
frames are part of the agents’ symbolic components, and
their slots are essentially pointers to other agents.

Coalitions also include an agent, known as the coalition
leader, that ‘represents’ the coalition and the knowledge it
expresses. These leaders will typically point to the essential
elements of their coalition and the concepts that they de-
rive from, or instantiate. If the coalition itself represents a
concept, then the leader may also point to its prototypical
instances.

And then we have situations — the 1994 version of AMBR
used comprehensive lists of pointers to provide complete and
rigid episode descriptions. While these centralised records
of events simplified the mapping process, they were left out
of subsequent versions due to their “psychological implausi-
bility”, and because doing so made it possible to investigate
other phenomena including episode blending and intrusions
from general knowledge.

In 1998, a more pliable approach to episode representation
was adopted. Instead of providing the definitive account
of an episode, the primary role of a situation agent is to
stand for its spatio-temporal boundaries — the situation
agent still points to the most salient features of an episode,
however it is pointed to by all of the participating agents.
Not only is this approach more psychologically plausible, but
a decentralised representation makes it easier for AMBR to
support context-dependent episodes and re-representation.

Finally, we have the hypothesis agents, or hypotheses, which
represent potential correspondences between concept or in-
stance agents. Unlike other mapping engines (such as ACME



and the SME, which enumerate all mappings that satisfy
a simple, syntactic constraint), every hypothesis in AMBR
must have at least one justification — be it semantic or
structural. Semantic justifications indicate that two agents
are semantically similar (e.g. that they are derived from
a common super-class); structural justifications follow from
their semantic counterparts and indicate that two hypothe-
ses are consistent (e.g. the hypothesis that two relations
correspond justifies the hypotheses that their arguments also
correspond).

Having introduced AMBR’s agents, we will now look at its
mechanisms. Building, as it does, upon DUAL, spread-
ing activation and marker-passing play an important role
in AMBR; on top of these, however, AMBR introduces four
more mechanisms — structure-correspondence, constraint sat-
isfaction, rating and promotion and skolemization. The structure-
correspondence, marker-passing and spreading activation mech-
anisms encourage structural, semantic and pragmatic corre-
spondences, respectively; the constraint satisfaction mech-
anism ensures that consistent hypotheses are favoured over
contradictory ones; the rating and promotion mechanisms
decide which hypotheses go on to become winners; and the
skolemization process implement a weaker form of transfer-
ence.

These mechanisms focus on local correspondences; the con-
straint satisfaction mechanism ensures that these correspon-
dences are globally consistent, and it does this by construct-
ing a constraint satisfaction network (CSN). This CSN is not
unlike the network used by ACME, however there are sev-
eral important differences: (1) AMBR constructs its CSN
incrementally (i.e. as the hypotheses are created) and its
‘solutions’ can be read before the network settles; (2) the
CSN is integrated into working memory, which gives it di-
rect access to the system’s goals and knowledge base, and
which allows the retrieval and mapping processes to adjust
the levels of activation in working memory; (3) the CSN
only contains hypotheses that have a semantic or structural
justification; and (4) AMBR’s lack of rigid episode represen-
tations, and the incremental way in which it generates its
CSN, means that the winning hypotheses may, in fact, come
from a mixture of situations [25].

The winning hypotheses, in turn, are chosen by the rating
and promotion mechanisms. In a system like ACME, the
winners are simply the nodes with the highest asymptotic
levels of activation; AMBR, however, uses a different cri-
terion. AMBR’s rating mechanism monitors the activation
of competing hypotheses, and increases the rating of the
most active hypothesis whilst decreasing the ratings of the
others; the amount by which the ratings are changed is pro-
portional to the difference in activation between the leader
and its closest competitor.

When a hypothesis’ rating drops below a critical loser thresh-
old, it is removed from working memory; when a hypothesis’
rating reaches an upper threshold, several things happen.
First, one of the agents from the target situation checks to
see if the leading hypothesis is consistent with the other
mappings. If it is, then the leader is promoted to winner,
and the ratings of its competitors are drastically reduced;
if, however, the leader is incompatible with its neighbour-

ing mappings then an inhibitory link is created between its
arguments, its rating is reset, and the monitoring continues.

The last of AMBR’s mechanisms is called skolemization.
Essentially, skolemization is the process of creating specific
propositions from general ones — that is, it is how AMBR
applies general knowledge. Skolemization is triggered by one
of two events: (1) when the activity of a general hypothesis
exceeds a certain threshold, and (2) when the rating and
promotion mechanism cannot find a clear leader using the
specific propositions alone. 2

In this section we looked at two models of analogy — the
SME and AMBR. The original SME is one of the canon-
ical models, and it embodies many of the assumptions of
traditional theories: it defines analogy in terms of isomor-
phisms and syntactic rules alone, it operates over complete
(and rigid) episode representations, it does not take seman-
tic, pragmatic or contextual factors into account, and when
it is combined with a model of analogue retrieval, the result-
ing system is sequential — i.e. the retrieval and mapping
stages are largely independent.

Set against this, we have AMBR which does take structural,
pragmatic and semantic constraints into account, which op-
erates on decentralised and context-dependent representa-
tions of concepts and episodes, and which treats the re-
trieval, mapping and transferral stages as overlapping, and
interacting, processes. In fact, AMBR is more than just a
model of analogy — it parallels Cowan’s model of working
memory (see Section 2.2), and because the results of these
stages can be accessed before its network settles, AMBR
could be used as an ‘online’, or continually running, model
of working memory.

While AMBR is both exciting and intuitive, it still falls short
of the criteria given in Section 2.3; in particular, AMBR’s
ability to learn is quite limited — it is unable to identify
(by itself) the salient or statistically significant features of
an episode, and it is unable to construct new representations
of episodes or concepts.

4. CONTEXT IN AI
For an online system to create an account of an episode,
though, it needs more than just percepts — it also needs a
way of discovering the scope, or extent, of the episode. This,
in turn, requires information about the types of episodes
that are likely to be encountered, and an explicit represen-
tation of these contexts. In the previous section we saw how
context-dependent structures emerge from AMBR’s use of
activation and coalitions. In this penultimate section, we
are going to look at the concept of context, and review, al-
beit briefly, how contexts are represented by agents and used
to guide their behaviour.

At its highest level, context serves two purposes: (1) it al-
lows us to explicitly represent all that is implicit about our
environment, goals and assumptions; and (2) it allows us to
constrain and qualify knowledge — that is, it makes knowl-
edge and reasoning local. In the field of AI, context has been
used to process natural language documents and database
queries, and during knowledge acquisition (where it is used



to partition knowledge bases into smaller, locally consistent,
modules) [5].

But what exactly does the term ‘context’ mean? In a general
sense, context can refer to the temporal, spatial or concep-
tual ‘locality’ of an object or event. This is what Kokinov
refers to as external context [16]; he also defines internal
context as the agent’s current mental state, which in our
case, corresponds to the distribution of activation in long-
term memory, and is shaped by perception, memory access
and reasoning.

More pragmatically, context can also be defined as the sub-
set of working memory that predicts, most succinctly, the as-
sumptions and behaviours that an agent should adopt in or-
der to maximise its measure of performance. This is consis-
tent with Turner’s definition of context as “any identifiable
configuration of environmental, mission-related, and agent-
related features that has predictive power for an agent’s be-
haviour. The term situation is used to refer to the entire set
of circumstances surrounding an agent, including the agent’s
own internal state.” [28, p. 2]

With this pragmatic definition in mind, let us now look at
some of the ways in which context, and context-dependent
behaviour, can be represented. There are, of course, many
such ways, but we will be focusing on representatives of two
quite different approaches — one that uses logic, and one
that uses micro-contexts to describe situations. In between
these two approaches, lie techniques such as Context-based
Reasoning (CxBR) and Contextual Graphs (CxG) [20].

(The CxBR model is essentially a state machine; contex-
tual knowledge is asserted within discrete and mutually-
exclusive states called contexts, and sentinel rules define the
valid transitions. Contextual graphs, on the other hand,
are directed acyclic graphs that consist of action, contextual
and recombination nodes. Contexts are hierarchical, and are
spanned by contextual–recombination node pairs; an agent’s
current context is determined by the presence of variables
(represented by contextual nodes) and their values (that de-
termine which arc, or branch, to follow). Unfortunately,
neither of these approaches are flexible enough for an artif-
ical memory system: in CxBR, contexts are monoliths that
need to be defined explicitly, while CxGs focus more on the
processes, or workflows, than the environment or the state
of the agent.)

4.1 Representing Context in Logic
The first way in which we can represent context is through
the use of first-order logic — an approach that allows us to
represent the implicit aspects of a situation, and to constrain
knowledge. But context in logic can also be used to gener-
alise knowledge; as McCarthy noted in his 1993 paper on
the subject, one of the goals of representing context in logic
is to allow “simple axioms for common sense phenomena ...
to be lifted to contexts involving fewer assumptions” [22].

In this paper, he argued that contexts should be treated as
first class objects, and he described the basic relations and
rules needed to define, and reason about them. The funda-
mental relation is ist(c, p), which asserts that the proposi-
tion p is true in context c; in McCarthy’s proposal, these

relations are themselves defined within another context. He
also defined the term value(c, t), which returns the value
of term t in context c; while the range of value is usually
fixed, this term allows us to introduce context-dependent
vocabularies.

In addition to these fundamental terms, however, this ap-
proach depends upon axioms that describe the contexts, and
define their interrelationships; the latter axioms, or lifting
rules, define how formulas can be lifted from one context
to another. Through them, we can express context-specific
knowledge, and move between contexts, but defining these
rules can be a time-consuming task in itself. 2

While this approach has its advantages, it also requires a
great deal of hand-crafted rules, an external set of contexts,
and some form of context recognition. Most importantly,
from my perspective, it is basically incompatible with the
activation-based models of working memory and analogy.

4.2 Context-Mediated Behaviour
The other approach that we are going to look at here is
called Context-Mediated Behaviour (CMB) [28, 1]. It is be-
ing developed by Turner and his colleagues at the University
of Maine, where it provides the context-management frame-
work for Orca — an agent that is designed to control long-
range autonomous underwater vehicles (AUVs); as such, it
is more concerned with context-appropriate behaviour and
computational efficiency than the ability to reason about
contexts, or generalise knowledge.

The essence of their approach is this: (1) situations can
be broken into one or more contexts; (2) contexts are rep-
resented by frame-like structures, called contextual schemas
(or c-schemas), which are used to identify contexts and guide
the agent’s behaviour; and (3) that differential diagnosis is
used to find the schemas that provide the ‘best’ account of
a situation.

In CMB, situations represent the agent’s view of the world,
and include all of the environment’s observable features;
contexts correspond to recognisable and recurring subsets of
these features; and schemas represent the agent’s context-
specific knowledge. (As these schemas focus on particular
aspects of an agent’s operating environment, several schemas
are usually needed to provide a sufficiently detailed account
of the larger, and more complicated situations; this merged
schema represents the current context.)

Contextual schemas may be further divided into two parts.
The descriptive part of a c-schema lists the agents and ob-
jects that might been seen in that context, together with
an estimate of their probability and importance; it may also
describe the features and characteristics of the environment
itself. The prescriptive part of a c-schema is where context-
sensitive values and behavioural parameters are set; it is
also where events, and procedures for handling them, are
defined.

Before an agent can use these schemas, however, they need
to be retrieved from long-term memory; in Orca, this process
is performed by the Embedded Context-Handling Object
(ECHO). The algorithm that ECHO uses to select the c-



schemas is based upon work done in the area of medical
diagnosis. Essentially, this process consists of four steps
(see [1] for a detailed description of the algorithm):

1. Find the contexts that predict the situation’s features.
When Orca’s long-term memory is probed with a sub-
set of the situation’s features, it returns the most spe-
cific c-schemas that fit the probe. These schemas, or
candidates, are given a score based upon the number
of features that are (a) predicted by the c-schema and
present in the situation, (b) predicted but absent, and
(c) not predicted but present.

2. Cull the candidate set. Candidates with scores that
are much less than the highest score are removed.

3. Evaluate the ‘diagnoses’. While one or more important
features remain unaccounted for, (a) create a competi-
tor set for the highest-scoring candidate (in Orca, two
schemas are competitors if the features predicted by
one are a subset of the other’s); (b) find the winner
— if the difference between the two highest scores ex-
ceeds a threshold, then the highest ranking schema
wins; otherwise, Orca tries to find out more about the
predicted-but-absent features; and (c) add the winner
to the current context, and remove the features that
it predicts from the set of ‘symptoms’.

4. Merge the winners into the current context. This is
where the schemas, and their potentially conflicting
information, are merged into a coherent whole. 2

While context-mediated behaviour has shown some promise,
the approach itself is still incomplete — the details of when
the current context should be calculated (and recalculated)
are still being worked out, and the rules that determine how
conflicting schemas should be merged is the subject of on-
going research. This, in turn, has implications for some of
the criteria outlined in Section 2.3; in particular, the lack of
an appropriate way to trigger a re-evaluation of the current
context limits its ability to correctly characterise its envi-
ronment and operate continuously. Finally, the question of
how new schemas might be created is yet to be looked at.

There are also some differences between CMB and my vi-
sion of an artificial memory system. For example, CMB does
not retrieve analogues; in a mission-critical setting, this is
probably the correct thing to do, but this ability can be
quite useful in other domains. Nor does it support the cog-
nitive process of episode blending; while CMB does create
its representations of the current context by merging sev-
eral smaller schemas, these schemas usually describe inde-
pendent aspects of the situation. Episode blending, on the
other hand, merges episodes that are superficially or struc-
turally similar [14] — a precursor, perhaps, of the ability to
make generalisations.

And finally, the fact that CMB only recalculates its cur-
rent contexts in response to an external trigger makes it
much coarser in time. Again, this might be appropriate for
a mission-critical system, but it also make it less sensitive
and responsive to changes in the environment. (Indeed, a
continuous approach that uses spreading activation might
even eliminate the need for an external trigger.)

In spite of these differences and limitations, CMB has shown
that an artificial memory system — one that is separate
from the reasoning system, and presents it with a context-
dependent knowledge base — is, indeed, feasible. Further-
more, the work being done on schema merging may also be
relevant to my project.

5. CONCLUSION
In this paper, we have looked at cognitive models of working
memory and analogy, and we have touched on some of the
ways in which context, and context-dependent knowledge
have been represented in AI. While most of this work dates
back to the early to mid-1990s, the cognitive models of hu-
man memory and analogy-making have not received a lot of
attention from the AI community; even less work has been
done to combine these models, or to extend their abilities
to learn. The purpose of this review, then, is to encourage
such an attempt.

Cowan’s Embedded-processes model of working memory pro-
vides an empirical account of human memory and attention
— both voluntary and involuntary. It does not, however,
explain how we acquire these memories in the first place,
nor does it specify which measures of similarity are used
to spread the activation; and while he notes that awareness
allows us to “incorporate contextual constraints that would
not automatically be taken into account” [8, p. 176], he does
not actually go on to define context.

Kokinov’s Associative Memory-Based Reasoning (AMBR)
is a hybrid, activation-based model of associative memory
that is also able to retrieve analogues, and to discover cor-
respondences between them. It does not, however, attempt
to model our attentional system — unlike Cowan’s model,
AMBR includes neither a central executive nor the concept
of habituation. AMBR also lacks the ability to learn, and
to acquire explicit representations of concepts or contexts.

And finally, we looked at Turner’s model of Context-Mediated
Behaviour (CMB). While it bears some resemblance to AMBR,
it does differ from the other models in several ways: (1) it is
not a cognitive model, but a way of providing artificial agents
with context-sensitive knowledge; (2) unlike AMBR (which
uses thresholds and a continual spreading of activation to
determine the contents of its working memory), CMB only
re-evaluates its current context after a significant change
has occurred; (3) it represents contexts, or types of situa-
tions instead of episodes; and (4) it represents knowledge
much more coarsely and rigidly than AMBR.

While CMB has shown that the concept of artificial working
memory is, indeed, feasible, a memory system that is based
upon the cognitive models of Kokinov and Cowan will offer
much more flexibility — it will serve as a context-sensitive
knowledge base, but it will also be able to retrieve knowledge
based upon literal and structural measures of similarity. If
we can add to this, the ability to learn — i.e. to discover sta-
tistically significant associations and sub-graphs — it may
even be able to acquire representations of classes of episodes,
and through this, the ability to identify contexts in an online
environment.
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